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Abstract
Imitation learning enables agents to reuse and
adapt the hard-won expertise of others, offering
a solution to several key challenges in learning
behavior. Although it is easy to observe behav-
ior in the real-world, the underlying actions may
not be accessible. We present a new method for
imitation solely from observations that achieves
comparable performance to experts on challeng-
ing continuous control tasks while also exhibiting
robustness in the presence of observations unre-
lated to the task. Our method, which we call
FORM (for “Future Observation Reward Model”)
is derived from an inverse RL objective and im-
itates using a model of expert behavior learned
by generative modelling of the expert’s observa-
tions, without needing ground truth actions. We
show that FORM performs comparably to a strong
baseline IRL method (GAIL) on the DeepMind
Control Suite benchmark, while outperforming
GAIL in the presence of task-irrelevant features.

1. Introduction
The goal of imitation is to learn to produce behavior that
matches that of an expert on unseen data, given demonstra-
tions of the expert’s behavior (Abbeel & Ng, 2004; Osa et al.,
2018). The field of imitation learning offers tools for learn-
ing behavior when programmed rewards cannot be provided,
or when rewards can only be partially or sparsely specified.
Imitation learning has been at the heart of several break-
throughs in building AI agents (Pomerleau, 1989; Abbeel
et al., 2010; Silver et al., 2016; Vinyals et al., 2019; OpenAI
et al., 2019), allowing agents to learn even when faced with
hard exploration problems (Gulcehre et al., 2020).

There is widespread evidence that imitation (among other
forms of social learning) is a core mechanism by which hu-
mans and other animals learn to acquire a sophisticated be-
havioral repertoire (Tomasello, 1996; Laland, 2008; Byrne,
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2009; Huber et al., 2009). While most algorithms for imita-
tion learning assume that demonstrations contain the actions
the expert executed, animals must imitate without directly
observing what actions the expert took (i.e. without know-
ing exactly what commands were issued to produce the
observable changes). In the context of machine learning,
solving the problem of imitation from observation is a key
step towards the tantalizing possibility of learning behavior
from unlabeled and easy to collect data, such as raw video
footage of human activity. Many recent algorithms for imi-
tation have focused on addressing the problem of imitation
in very small data regimes, but the challenge in imitating
from these abundant sources of data is not primarily one of
quantity. The challenge is rather how to learn models for
imitation that are general enough to learn and generalize
from data that depicts a rich (and unknown) reward structure.
In this work, we show how predictive generative models can
be used to learn a general reward model from observations
alone.

Current state-of-the-art approaches to imitation (including
from observation) pose learning as an adversarial game: a
classifier estimates the probability that a state is visited by
the expert or imitator, and the policy seeks to maximize
the classifier error (Merel et al., 2017; Torabi et al., 2019a).
Because these methods are based on matching the expert’s
occupancy using a fixed dataset of demonstrations, they tend
to be very sensitive to the precise details of the demonstra-
tions and to the representation used. This property makes
learning with adversarial methods difficult when using raw,
noisy observations without extensive tuning and careful
use of strong forms of regularization (Peng et al., 2019),
domain or task knowledge (Zolna et al., 2020), or a com-
bination of behavioral cloning and careful representation
design (Abramson et al., 2020).

In this work, we introduce the future observation reward
model (FORM) (see Figure 1), which address the problem
of imitation from observation while exhibiting both (1) gen-
erality and expressiveness by coupling predictive generative
models with inverse RL (IRL) and (2) improved robustness
by foregoing an adversarial formulation. In FORM, the imi-
tator tries to match the probability of observation sequences
in the expert data. It does so using a learned generative
model of expert observation sequences and a learned genera-
tive model of its own observation sequences. In other words,
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Figure 1. FORM learns to imitate expert behavior using sequences of internal state observations, without access to the expert’s actions.
Visualizations of agent behavior (top) and reward curves for a single episode (bottom) are shown after 0 (left), 50k (middle) and 5M
update steps. FORM imitates using two learned models: both the demonstrator model (trained offline) and the imitator model (trained
online) log-likelihoods track the unseen task reward as the imitation agent learns. Agent behavior is shown as images, but we use
lower-dimensional internal state observations in this work.

FORM casts the problem of learning from demonstrations
as a sequence prediction problem, using a generative model
of expert sequences to guide RL. Because FORM builds sep-
arate models of expert and imitator sequences, rather than
using a single classifier to discriminate expert and imitator
states, it is less prone to focus on irrelevant differences be-
tween the expert and imitator demonstrations. The structure
of the FORM objective makes it theoretically straightfor-
ward to optimize using standard policy optimization tools
and, as we show, empirically competitive on the DeepMind
Control Suite continuous control benchmark domain.

This stands in contrast to adversarial methods, such as Gen-
erative Adversarial Imitation Learning (GAIL), whose ob-
jectives are known to be ill-posed (without additional regu-
larization) and challenging to optimize both in theory and
in practice (Arjovsky et al., 2017; Gulrajani et al., 2017;
Mescheder et al., 2017). This property makes it difficult to
apply adversarial techniques to imitation in settings with
even small differences between expert and imitator settings
(Zolna et al., 2020). Robustness to distractors is an im-
portant part of behavior learning, as recently illustrated by
Stone et al. 2021 in the context of RL with image back-
ground distractors. These situations are common in practice:
the lab environment where expert data is collected for a
robot will be quite different to where it might be deployed.
While it may be possible to collect a large number of demon-
strations, it is impossible to exhaustively sample all possible
sources of differences between the two domains (such as
the surface texture, robot physical parameters, or environ-
ment appearance). These differences confound the signal
that must be imitated, leading to the risk of spurious depen-
dencies between the two being learned. As we will show,
FORM exhibits greater robustness than a well-tuned adver-
sarial imitation method, GAIL from Observation, or GAIfO
(Torabi et al., 2019a) in presence of task-independent fea-
tures.

We make the following technical contributions in this work:

1. We derive the FORM reward from an objective for
inverse reinforcement learning from observations. We
show that this reward can be maximized using gen-

erative models of expert and imitator behavior with
standard policy optimization techniques.

2. We develop a practical algorithm for imitation learning
using the FORM reward and demonstrate that it per-
forms competitively with a well-tuned GAIfO model
on the DeepMind Control Suite benchmark.

3. We show that FORM is more robust than GAIfO in the
presence of extraneous, task-irrelevant features, which
simulate domain shift between expert and imitator set-
tings.

2. Background and related work
RL, IRL, and imitation Reinforcement learning is con-
cerned with learning a policy that maximizes the expected
return, which is given as the expected sum of all future
discounted rewards (Sutton & Barto, 2018), which are typi-
cally observed. In imitation learning, on the other hand, we
are not given a reward function, but we do have access to
demonstrations produced by a demonstrator (or expert) pol-
icy, which maximizes some (unobserved) expected return.

IRL has the related goal of recovering the unobserved re-
ward function from expert behavior. IRL offers a general for-
mula for imitation: estimate the reward function underlying
the demonstration data (a “reward model”) and maximize
this reward by RL (Ng & Russell, 2000), possibly iterating
multiple times until convergence. Alternative approaches
to imitation, such as behavioral cloning (BC) (Pomerleau,
1989) or BC from observations (BCO) (Torabi et al., 2018),
typically have difficulty producing reliable behavior away
from configurations seen in the expert demonstrations. This
is because small errors in predicting actions or mimicking
short-term agent behavior accumulates over long behavioral
timescales.1 IRL methods like FORM avoid this problem:
because they perform RL on a learned reward, they can learn
through experience to recover from mistakes by focusing on
long-term consequences of each action.

1The standard solution to this problem for BC assumes access
to an expert policy that can be repeatedly queried (Ross et al.,
2011), which is not always feasible.
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GAIL and occupancy-based IRL Most contemporary
IRL-based approaches to imitation – as exemplified by
GAIL – use a strategy of state-action occupancy match-
ing, typically by casting imitation as an adversarial game
and learning a classifier to discriminate states and actions
sampled uniformly from the expert demonstrations from
those encountered by the imitator (Ho & Ermon, 2016;
Torabi et al., 2019a; Fu et al., 2018; Kostrikov et al., 2019;
Ghasemipour et al., 2019). In contrast, rather than classi-
fying states as belonging to the expert or imitator, FORM
learns to imitate using separate generative models of expert
and imitator behavior. This means that FORM is built on pre-
dictive models of the form p(xt|xt−1), where xs are obser-
vations, rather than a single model of the form p(expert|x)
that tries to classify observations as generated by the expert
or not. FORM’s objective is similar in spirit to classical
feature-matching and maximum-entropy formulations of
imitation (Ng & Russell, 2000; Abbeel & Ng, 2004; Ziebart
et al., 2008), while also providing a fully probabilistic in-
terpretation and making minimal assumptions about the
environment (the FORM objective does not require an MDP
or deterministic transitions).

Other related methods for imitation Other recent work
has used generative models in the context of imitation learn-
ing: this work typically retains GAIL’s occupancy-based
perspective (Baram et al., 2016; Jarrett et al., 2020; Liu
et al., 2021) or introduces a generative model to provide a
heuristic reward (Yu et al., 2020). Unlike FORM, which
uses effect models (see Figure 2) that are suitable for imi-
tation from observations, this work models quantities that
are useful primarily in conjunction with actions (modeling
state-action densities and/or dynamics models for GAIL
augmentation). Other recently proposed methods learn re-
ward models either purely or partially offline (Kostrikov
et al., 2020; Jarrett et al., 2020; Arenz & Neumann, 2020).
This approach leans on the presence of actions in the demon-
strator data. Although FORM’s demonstrator effect model
is learned offline, FORM’s online phase is essential to the
process of distilling an effect model (which doesn’t use
actions) into a policy (which does).

Learning to act from observations Many methods have
been proposed for imitation from observation (Torabi et al.,
2019b), but most methods that do so using IRL are based
around GAIL (Wang et al., 2017; Torabi et al., 2019a; Sun
et al., 2019). Recent work has obtained interesting results
using solutions based around tracking or matching trajec-
tories in learned feature spaces (Peng et al., 2018; Merel
et al., 2019), by matching imitator actions to learned models
of expert trajectories (interpreted as inverse models of the
expert action) (Schmeckpeper et al., 2020; Zhu et al., 2020;
Edwards et al., 2018; Pathak et al., 2018), and by learning to
match features in learned invariant spaces (Sermanet et al.,
2017). Finally, we note that much recent work has observed
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Figure 2. FORM’s demonstrator and imitator effect models are
effect models, generative models p(xt|xt−1) of the change in ob-
servation (observed) produced by a policy π in an environment
with transition dynamics pT (unobserved). The models used in
model-based RL are usually of the form p(xt|xt−1, at−1) and aim
to model transition dynamics rather than the full distribution of
outcomes given a policy.

that the structure of observation sequences can be exploited
to generate behavior, whether in the context of language
modeling (Brown et al., 2020), 3D navigation (Dosovitskiy
& Koltun, 2017), few-shot planning (Rybkin et al., 2019), or
value-based RL (Edwards et al., 2020). FORM uses genera-
tive models of future observations to exploit this property of
observation transitions and connect it to inverse reinforce-
ment learning to produce a practical algorithm for imitation.

3. Approach
3.1. Inverse reinforcement learning from observations

Our goal is to learn a policy that produces behavior like
an expert (or demonstrator) by IRL, using only observation.
Historically, the IRL procedure has been framed as matching
the expected distribution over states and actions (or their
features) along the imitator and demonstrator paths (Ng &
Russell, 2000; Abbeel & Ng, 2004; Ziebart et al., 2008). As
also noted in (Arenz & Neumann, 2020), we can express
this as a divergence minimization problem:

min
θ
DKL[pIθ(τ)||pD(τ)], (1)

where τ = {x0, a0, x1, a1, . . . , aT−2, xT−1} is a trajectory
consisting of actions are actions A = {a0, . . . aT−1} and
states X = {x0, . . . , xT−1}. We use x rather than o (for
observation) or s (for state) because FORM does not assume
that its inputs are Markovian – FORM applies to generic
observations – but speaking in terms of states simplifies
the comparison to other methods (like GAIL) that assume
Markovian states are given or inferred. pD(τ) is the distribu-
tion over trajectories induced by the demonstrator’s policy
and the environment dynamics, while pIθ(τ) is the corre-
sponding distribution induced by an imitator with learnable
parameters θ.

In imitation learning from observation, the imitator must rea-
son about the demonstrator’s behavior without supervised
access to the expert’s actions (its control signals). Accord-
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ingly, we focus on distributions over observation sequences,
which amounts to integrating out the imitator’s actions:

pIθ(X) =

∫
A

pIθ(τ) =

∫
A

pIθ(A,X)

=

∫
A

∏
t≥0

p(xt|x<t, a<t)πIθ(at−1|x<t, a<t−1).

(2)

This density reflects both the environment transition dy-
namics p(xt|xt−1, at−1) and the imitator policy πθ(at|xt),
whose parameters θ we seek to learn. Similarly, we can
write the probability of a demonstrator trajectory in terms
of the unobserved expert policy as

pD(X) =
∏
t≥0

pD(xt|x<t)

=

∫
A

∏
t≥0

p(xt|x<t, a<t)πD(at−1|x<t, a<t−1).

(3)

Our objective is to minimize the KL-divergence2 between
these two densities:

min
θ
DKL[pIθ(X)||pD(X)]

= min
θ

EpIθ(X)

[
log pIθ(X)− log pD(X)

]
. (4)

Minimizing the divergence corresponds to maximizing the
following expression in expectation:

ρFORM = log pD(X)− log pIθ(X). (5)

In this work, we propose to imitate by treating ρFORM as a
return and maximizing it using RL.

3.2. Optimizing FORM with effect models

To see how we will capture this expression, first note that
each term of ρFORM is a log-density over the states encoun-
tered in an episode log p(X), which we can rewrite as
log p(x0) +

∑
t>0 log p(xt|x<t) using the chain rule for

probability. As the initial state is independent of the policy,
we can simplify the expression used in each reward term
to
∑
t≥0 log p(xt|xt−1). This means the return can be ex-

pressed solely in terms of next-step conditional densities. To
simplify the discussion, we present all results from here for-
ward in terms of one-step predictive models log p(xt|xt−1),
but the FORM derivation and algorithm applies equally well
to generic sequence models log p(xt|x<t).

We propose to learn a reward model by introducing models
of the state transition densities under (1) the demonstrator

2We use the reverse KL because the policy learns on its own
trajectories, as in RL (Levine, 2018).

pD(xt|xt−1) and (2) the imitator pIθ(xt|xt−1). We refer
to these as effect models to differentiate them from how
“model” is used elsewhere in the RL literature to refer to
models of transition dynamics (Figure 2). Unlike transi-
tion models, which are typically action-conditional and are
assumed to model policy-independent transition dynamics,
effect models are not conditioned on actions and attempt
to capture the effects of policy and environment dynamics.
A similar class of models was used to model an expert’s
behavior in recent work (Rhinehart et al., 2020).

Algorithm 1 Imitation learning with FORM
Input: A fixed dataset D of expert state transitions, a replay

buffer to fill with imitator data, an environment.
Init: Randomly initialize demonstrator effect model

pDω (xt | xt−1), imitator effect model pIφ(xt | xt−1),
and imitator policy πIθ(at|xt).

while pDω not converged do
# Train demonstrator effect model
Sample batch of trajectories from the expert dataset D.
Update pDω by taking a gradient step (e.g. with Adam)

on:

max
ω

ED
[∑
t≥0

log pDω (xt | xt−1)
]
.

end
while πIθ(at|xt) not converged do

# Train imitator effect model and policy
Sample trajectories from the environment using πIθ and

add them to the replay buffer.
Sample batch of trajectories from the replay buffer.
Label the reward of each sampled transition
(xt−1, at−1, xt) using pDω (xt | xt−1) and pIφ(xt |
xt−1):

rt = log pDω (xt | xt−1)− log pIφ(xt | xt−1).

Update πIθ(at|xt) with a step of a policy improvement
algorithm (e.g. with MPO) using returns computed
from the reward-labeled trajectories (e.g. with Re-
trace).

Update pIφ(xt | xt−1) by taking a gradient step (e.g.
with Adam) on:

max
φ

EI [
∑
t≥0

log pIφ(xt | xt−1)].

end

We wish to maximize this return using standard tools for
policy optimization. We can do this without introducing
bias only if the policy gradients do not depend on gradients
of any term in the reward (which aren’t accounted for by
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standard policy optimizers). As we derive in Sec. A of the
appendix, this assumption holds, and we can write the policy
gradient as:

∇θJFORM(π
I
θ) = Eτ∼πIθ [ρFORM

∑
t≥0

∇θ log πIθ(at|xt)]. (6)

Intuitively, the policy gradient does not involve gradients
of either pIθ or pD because neither of these densities are
conditioned on the actions sampled from the policy (in ef-
fect, the contribution of the density to the policy gradient is
integrated out). Because the demonstrator effect model is
independent of the imitator, we can train it offline on expert
demonstrations using a maximum likelihood objective:

max
ω

EpD(X)[
∑
t≥0

log pDω (xt | xt−1)]. (7)

The model of the imitator density log pIθ(X), on the other
hand, needs to capture the transition density under the cur-
rent policy (it acts as a self-model). Accordingly, we train it
by taking stochastic gradient descent steps on the following
objective at the same time as the imitator policy is training:

max
φ

EpIθ(X)[
∑
t≥0

log pIφ(xt | xt−1)]. (8)

By incorporating both models, we obtain the full FORM
policy objective:

max
θ

EπIθ(X)

[∑
t≥0

log pDω (xt | xt−1)− log pIφ(xt | xt−1)
]
.

(9)

Despite the inclusion of two terms with opposite signs, the
FORM policy objective is not an adversarial loss: FORM
is based on a KL-minimization objective, rather than an
adversarial minimax objective, and is not formulated as a
zero-sum game. The second term in the objective can be
viewed as an entropy-like expression, similar to the one that
arises in maximum-entropy RL (Levine, 2018).

This objective includes both an expectation with respect to
the current imitator policy and a term that reflects the current
imitator effect model. This suggests that this objective is
easiest to optimize in an on-policy setting. Nonetheless, we
find that it can be stably optimized in a moderately off-policy
setting. In all experiments here, we sample transitions from
a replay buffer, computing rewards as they are consumed.
We compute returns using the Retrace algorithm on the raw
rewards (Munos et al., 2016) (which corrects for mildly
off-policy actions using importance sampling). We optimize
the policy using the MPO algorithm (Abdolmaleki et al.,
2018). We choose MPO because it is known to perform well
in mildly off-policy settings: FORM itself does not make
any MPO-specific assumptions, and we expect it to perform
well with many other policy optimizers. We describe our
full procedure in Algorithm 1.

3.3. GAIL, occupancy-based imitation, and robustness

GAIL and its variants are justified in terms of matching
the state-action occupancy of an expert – GAIL attempts to
unconditionally match the rates at which states and actions
are visited – rather than directly matching a policy or its
effects. In contrast, FORM’s reward is derived directly from
an objective that matches a policy’s effects on a sequence
(eq. 5). This has consequences for their robustness, as we
will explain.

First, note that a policy is a local concept (it describes how to
map states or observations to actions), while an occupancy
is a global concept (it describes the rates at which an agent
visits states and actions in expectation). To see why the
occupancy is global, note that the occupancy (Ho & Ermon,
2016; Torabi et al., 2019a) of a state xi by a policy π is given
by ρπ(xi) =

∑∞
t=0 γ

tp(xt = xi|π), where in general:

p(xt = xi|π) =
∫

{x,a}<t

p(xt = xi|x<t, a<t)p(x<t, a<t|π)

(10)

In other words, to reason about the occupancy of a state is
to reason about every possible way the policy might arrive
there. In practice, for GAIL, the discriminator computes
a state’s reward by comparing the frequency of xt to the
frequency of all other states that are seen in the data, what-
ever the conditions under which that state was produced.
Because FORM relies on conditional probabilities and does
not depend on long-horizon visitation in its derivation, the
only relevant states are those that appear under similar con-
ditions. Essentially, FORM’s reward involves comparisons
to fewer observations because it takes a state’s context –
namely, the transition that produced it – into account.

We expect this property to mitigate GAIL’s sensitivity to
noise. It’s easiest to see why this should happen by compar-
ing GAIfO and FORM for two-state inputs. Here, FORM
maximizes log pD(xt|xt−1)− log pI(xt|xt−1) (each term
estimated separately by maximum likelihood), while GAIfO
maximizes log pD(xt,xt−1)

pI(xt,xt−1)
= log pD(xt|xt−1)p

D(xt−1)
pI(xt|xt−1)pI(xt−1)

(the
entire log ratio is estimated in one go by a discriminator).
If a feature is present in the imitator data but was never in
the demonstrator data, then pD(xt−1) will be close to 0 on
this data, driving the log ratio to −∞ regardless of the prob-
ability of the transition that follows. The presence of noise
makes spurious features like this inevitable. This makes it
difficult for GAIL to focus on the meaningful controllable
differences in the data, namely in the transition probabilities
p(xt|xt−1). By estimating each term separately (avoiding a
discriminator) and including only transition-related terms
(using a conditional density), FORM reduces the suscepti-
bility to sensitivity of this kind.
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Expert BC BCO GAIfO GAIfO+GP VAIfO VAIfO+GP FORM
Reacher Easy 974.6 970.3 ± 12.2 966.6 ± 7.9 869.9 ± 48.6 915.9 ± 37.8 861.6 ± 61.4 901.3 ± 30.4 950.2 ± 14.9

Reacher Hard 981.3 892.4 ± 19.1 940.1 ± 3.9 818.7 ± 11.3 783.7 ± 119.7 604.4 ± 426.3 891.0 ± 73.9 957.3 ± 6.1

Cheetah Run 930.5 227.5 ± 37.4 75.7 ± 4.2 607.6 ± 429.6 921.3 ± 6.9 820.0 ± 98.8 918.3 ± 6.4 827.9 ± 31.9

Quadruped Walk 972.4 752.1 ± 37.3 191.9 ± 33.6 672.6 ± 409.8 963.6 ± 4.8 927.8 ± 5.0 945.8 ± 15.5 963.6 ± 2.5

Quadruped Run 962.9 719.2 ± 14.0 271.4 ± 48.4 952.5 ± 7.5 952.3 ± 2.1 926.6 ± 38.3 950.0 ± 2.7 948.5 ± 1.5

Hopper Stand 965.8 534.1 ± 13.2 91.4 ± 8.5 400.0 ± 164.3 748.5 ± 224.1 835.8 ± 103.0 891.2 ± 42.1 815.7 ± 9.2

Hopper Hop 711.5 98.4 ± 4.8 9.1 ± 7.2 689.2 ± 10.0 694.4 ± 0.3 610.5 ± 74.8 683.6 ± 22.3 636.2 ± 38.9

Walker Stand 993.6 731.7 ± 29.7 385.9 ± 27.6 989.4 ± 1.5 985.4 ± 1.6 989.4 ± 0.5 986.0 ± 1.9 985.1 ± 2.6

Walker Walk 983.2 719.5 ± 50.0 61.9 ± 20.7 976.5 ± 2.8 981.6 ± 1.4 971.2 ± 5.6 975.2 ± 1.3 977.8 ± 1.0

Walker Run 952.1 108.5 ± 33.2 39.0 ± 7.8 949.5 ± 5.6 947.6 ± 5.5 949.0 ± 2.6 948.5 ± 2.1 942.0 ± 4.5

Humanoid Stand 905.9 780.7 ± 30.5 9.99 ± 2.51 4.9 ± 1.0 856.2 ± 15.5 257.5 ± 12.4 863.5 ± 7.7 704.6 ± 12.1

Humanoid Walk 809.5 293.9 ± 16.2 9.61 ± 5.73 1.2 ± 0.4 798.4 ± 1.0 658.2 ± 123.6 795.5 ± 3.4 783.0 ± 3.3

Humanoid Run 736.6 54.2 ± 5.1 1.04 ± 0.24 0.6 ± 0.0 683.4 ± 6.9 676.6 ± 25.8 691.6 ± 24.0 691.1 ± 7.8

Table 1. Asymptotic performance on 13 tasks from six DCS domains (mean ± standard deviation across three seeds) of our method
(FORM) and baselines Behavioral Cloning from Observations (BCO) (Torabi et al., 2018), GAIL from Observations (GAIfO) (Torabi
et al., 2019a), and regularized variants with a tuned gradient penalty (Gulrajani et al., 2017) (GAIfO+GP), a variational discriminator
bottleneck (Peng et al., 2019) (VAIfO), or both forms of regularization (VAIfO+GP). Because BC (Pomerleau, 1989) uses expert actions it
is not comparable to the other methods, but nevertheless performs poorly on many tasks, even with 1000 demonstrations. FORM performs
competitively with well-regularized forms of GAIfO, while generally outperforming BCO and GAIfO. For each task, we highlight the
method with best and second best mean performance.

Finally, we note that GAIL is typically justified by the obser-
vation that recovering an expert’s occupancy is equivalent
to recovering its policy, but this is only true in Markov De-
cision Processes (MDPs) (Syed et al., 2008; Ho & Ermon,
2016) and not in general. In practice, imitation must often
be done using noisy or high-dimensional observations rather
than ground-truth MDP states, and matching occupancy in
these spaces is problematic. In settings like this, relying on
the global occupancy induced by a policy rather than on the
immediate effects of a policy may lead to misleading results.
For example, GAIL will attempt to match the occupancy of
all noise dimensions, and this is usually possible. In practice,
this means that the GAIL objective needs to be carefully reg-
ularized to avoid overfitting to irrelevant differences. These
effects appear to be stronger when training an IRL agent
from replay, as discussed in (Kostrikov et al., 2019), and
they may be further exacerbated when imitating without
actions. In our experiments, GAIfO fails completely on the
Humanoid tasks of the Control Suite when unregularized.
Even with strong regularization, GAIfO is very sensitive to
the presence of irrelevant differences between demonstrator
and imitator domains, as our experiments illustrate.

4. Experiments
We evaluate FORM against strong baselines on 13 tasks
from six domains from the DeepMind Control Suite (DCS)
(Tassa et al., 2018), a set of benchmarks for continuous con-
trol domains, chosen to match those frequently used in the
imitation learning literature3. All approaches use internal

3We note that many imitation learning methods are evaluated on
the superficially similar OpenAI Gym Mujoco benchmark (Brock-
man et al., 2016), but the Gym domains have essentially deter-
ministic initial states and other properties that make them poorly

Mujoco state representations: these are smaller than e.g.
image observations, and vary in size from 6- (reacher) to 67-
(humanoid) and 78-dimensional (quadruped). As observed
by (Zolna et al., 2020), GAIL struggles to imitate in the pres-
ence of a small number of differences between expert and
imitator domains. We conduct a similar experiment to char-
acterize the robustness of FORM and GAIfO to irrelevant,
but undersampled, factors of variation in the demonstrator
data. Because the focus of our evaluation concerns robust-
ness to distractors, rather than the minimum number of
demonstrations needed for successful imitation, we conduct
all experiments using 1000 demonstrations, sufficient to
ensure mostly satisfactory performance in the absence of
distractors.

Expert data. For all domains, we train an expert via RL
on the ground truth task reward. Experts are trained to
convergence using MPO, with the same policy and value
architecture used for imitation (under all imitation condi-
tions). For imitation, we generate a fixed dataset of 1000
demonstration trajectories from each policy, each of which
depicts a single episode 1000 timesteps in duration (i.e. 106

steps total). All imitation methods are trained using the
same demonstrator data.

Distractor data. To probe robustness to a domain shift
between the expert and imitation domains, we deliberately
introduce spurious signals, unrelated to the task or agent
state, into the state observation vector. During the demon-
stration phase, these take the form of binary noise patterns
drawn from a fixed set which are appended to the state vec-
tor and held constant for the duration of the episode. During

suited for evaluating imitation learning methods (see Sec. D of the
Appendix for a discussion).
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Figure 3. Performance of FORM, GAIfO+GP, and GAIfO in the presence of distractor features. The distractor pool size M (#unique
points sampled in expert data) is varied from 103 down to 1 for both N = 8 and N = 16 distractor dimensions. FORM exhibits greater
stability than GAIfO+GP in both settings, maintaining performance down to M = 10. Error bars indicate standard deviation across 3
seeds. For reasons of legibility and space, comparison to all other baselines are given in the appendix.

imitation binary noise vectors are also appended, but any
binary pattern is permitted (i.e. no longer need come from
the fixed set). The different patterns appended during the
expert and imitation phases impose a domain shift between
them.

Formally, during imitation we append the state vector xt
with a binary pattern b ∼ [0, 1]N to form an augmented ob-
servation x̃t = [xt; b], where N is the number of distractor
dimensions. During demonstration, b ∼ {b1, . . . , bM}, b ∈
[0, 1]N , whileM controls the the number of distinct patterns,
known as the pool size. M and N control the magnitude
of the domain shift: increasing N makes the task harder
by reducing the fraction of state that contains signal, while
increasing M makes the task easier by ensuring that all dis-
tractor features are present in both demonstrator and imitator
data.

Due to the input normalization procedure (Sec. 4.1), the IL
agent has no way of distinguishing noise dimensions from
ones carrying state information. Ideally however, it should
learn to ignore the extra dimensions since they are unrelated
to the task, making it robust to changes in the distractor
pattern. Our setup directly parallels situations encountered
in practice involving undersampled factors of variation. For
example, when performing IL using visual inputs with a
robot, the background appearance of the rooms in which

the expert data collection and imitation during deployment
are performed correspond to two distinct distractor patterns
that are intermingled with task-relevant portions of the state.
For IL to work in such settings the algorithm must be robust
to changes in the background distractors. We can see how
sensitive a model is to the presence of undersampled factors
of variation by observing how stable its performance is as
the pool size M decreases.

4.1. Details of the FORM implementation

Architecture. We use simple feedforward architectures to
parameterize the density models (3 layer MLPs with 256
units, and tanh and ELU (Clevert et al., 2016) nonlinear-
ities). We model the density as a mixture of 4 Gaussian
components, with the network outputting GMM mixture
coefficients and the means and standard deviations of each
component. We use Gaussians with a diagonal covariance
matrix. In all experiments, we clip the standard deviation to
a minimum value of 0.0001. We use the same architecture
and same hyperparameters for the imitator and demonstrator
effect model in each setting.

Effect model training. All demonstrator models were
trained offline for 2 million steps. We standardized effect
model inputs using per-dimension means and variances es-
timated by by exponential moving average: we found that
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this improved generative model training (it did not affect
GAIfO training).

Three forms of regularization were used with the demon-
strator and imitator generative models: (i) `2 weight-decay,
(ii) training on data generated by agent rollouts, i.e. us-
ing the network output at a timestep as the input at the
next during training (a common trick used in the recurrent
neural network literature (Bengio et al., 2015)), (iii) pre-
diction of observations at multiple future timesteps (Hafner
et al., 2019). See the Appendix for more details. In all
experiments, we share the hyperparameter settings of all
regularizers between the demonstrator and imitator effect
model (we do not tune them separately). We tuned `2 weight
(sweeping values of [0.0, 0.01, 0.1, and 1.0]) and the frac-
tion of each batch generated by agent rollouts (sweeping
values of [0.0, 0.01, 0.1, 1.0]) per domain, but otherwise use
identical hyperparameters for all FORM models.

4.2. Baselines: GAIfO and BCO

To ensure DMCS experiments were fair and well-calibrated,
we impelemented and tuned a strong GAIfO baseline. The
GAIfO discriminator is conditioned on the current obser-
vation. We found that there was no benefit to conditioning
on pairs of subsequent observations (see Table 5 in the Ap-
pendix). This is likely because DCS observations include
velocity observations as well as static positions. The dis-
criminator network uses the same architecture as the FORM
effect models except for the mixture-of-Gaussians head,
which is replaced by a (scalar) classifier head. We addi-
tionally found that there was no benefit in standardizing
the observations as we do for FORM. For GAIfO+GP, we
apply a gradient penalty (Gulrajani et al., 2017) to the last
two layers of the discriminator. For VAIfO (VAIL from
observations), we introduce a variational bottleneck in the
discriminator architecture and add a KL-constraint term to
the loss, as in (Peng et al., 2019). Following (Kostrikov
et al., 2019), we train both the policy and the discriminator
using data sampled from a replay buffer.

In BCO, an inverse model p(at|xt, xt+1) is trained on imita-
tor trajectories and then used to label the actions on demon-
strator trajectories (Torabi et al., 2018). We train the inverse
model using the same architecture as the FORM effector
models and the GAIfO discriminator, replacing the output
head with a Gaussian distribution (the same class of distri-
butions used by the RL agent to produce the actions). The
BCO agent is then trained in a supervised fashion on expert
trajectories labeled by the inverse model. The BC agent is
trained directly on expert trajectories with expert actions.
Because BC is trained using expert actions, while the other
imitation algorithms we evaluate are not, it is not strictly
comparable. We include it to calibrate readers to the dif-
ficulty of these tasks and the relative performance of the

algorithms we evaluate for imitation from observation.

4.3. Policy architecture

For both IRL methods (FORM and GAIfO), the underlying
policy is trained with MPO and experience replay. Both the
policy and critic networks encode a concatenation of the
environment’s observations that has been passed through
a tanh activation. Both encode the observations with inde-
pendent 3-layer MLPs using ELU activations. The policy
network then projects to parameterize the mean and scale
of a Gaussian action distribution. The critic concatenates
the sampled action, applies layernorm (Ba et al., 2016) and
a tanh, and applies another 3-layer MLP to produce the
Q-value. All hidden layers have a width of 256 units.

4.4. Results

No distractors. In Table 1 we compare FORM to BCO and
GAIfO, with various strong forms of regularization on the
DeepMind Control Suite in the absence of distractors. The
results are shown alongside the reward obtained by the ex-
pert RL agent. BCO succeeds only on the Reacher domain,
performing poorly on the others. GAIfO in general performs
well but fails completely on the Humanoid domain. The
addition of a tuned gradient penalty or the introduction of a
variational discriminator bottleneck allows GAIfO to also
perform well on the Humanoid domain. FORM achieves
competitive performance to strongly regularized forms of
GAIfO (GAIfO+GP, VAIfO, VAIfO+GP). Despite access to
1000 demonstrations, no method is able to match expert per-
formance on the Humanoid tasks, illustrating the challenge
this domain poses due to the dimensionality of the state-
space and highly variable initial conditions. This number
of demonstrations (1000) may seem large when compared
to the numbers used in work that uses the Gym benchmark
(Brockman et al., 2016). But please note that tasks from the
Gym benchmark are easier to imitate, requiring almost no
generalization between demonstrator and imitator due to its
essentially deterministic initialization.

With distractors. We now explore the robustness of the
different approaches to settings where distractors are present
in the observations. Figure 3 compares FORM with GAIfO
and GAIfO+GP withN = 8 andN = 16 dimensions of dis-
tractor features, as the distractor pool size M is varied from
103 down to 1. With N = 8 distractor dimensions, FORM
is consistently able to maintain performance as M = 10,
by which point the performance of GAIfO+GP has dropped
significantly. For N = 16 distractor dimensions the degra-
dation for GAIfO+GP is more severe, even at the easier
setting of M = 100. In contrast, FORM is still able to
perform well on most tasks (Humanoid Stand being the ex-
ception). We compare FORM to all other baselines on this
setting in Figs. 5 and 6 of the appendix, and this trend holds
generally. We find that GAIfO with a variational bottleneck
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Distractor 1 Distractor 2

Figure 4. Left, Middle — subset of observation dimensions (3 internal states (top) and 3 distractor features (bottom)) from a FORM
imitation agent on the Walker Run task. Distractor features appear as horizontal lines as they do not vary with time in an episode. True
observations, with demonstrator and imitator predictions overlaid. Distractor 1 shows the agent learning with a pattern previously seen in
the expert demonstrations. Distractor 2 uses a novel pattern not seen in expert data. The FORM agent behavior and model predictions are
qualitatively unchanged, showing robustness to the distractor pattern. Right — reward model traces for both FORM and GAIfO+GP,
alongside the ground truth task reward. Top: the log-likelihoods of the demonstrator and imitator components of the FORM reward model,
for distractor 1 (top) and distractor 2 (bottom). Bottom: the expert probability output by the GAIfO+GP discriminator for distractor 1
(top) and distractor 2 (bottom). Both FORM and GAIfO+GP agents were trained with with N = 8 distractor dimensions and a pool of
M = 10 distractors in expert data. FORM is robust to distractor features in this setting even when its predictions are imperfect, and the
imitation agent obtains good reward on the task. In contrast, the behavior of the GAIfO+GP agent depends significantly on the distractors
and largely fails at the task.

regularizer (VAIfO and VAIfO+GP) performs similarly to
GAIfO, and still exhibits sensitivity to noise. BC and BCO
generally perform worse than FORM, but BC shows good
noise resilience on Humanoid Stand in particular.

Figure 4 visualizes the effect on imitation performance when
the distractor pattern (M = 10, N = 8) is changed between
imitation training runs on the Walker Run task. Demonstra-
tor and imitator model predictions from the FORM model
show minimal change, with the agent achieving good re-
ward for both patterns. In contrast, the GAIfO+GP model is
highly sensitive to the change in distractor pattern and fails
at the task. Collectively, these results show the fragility of
GAIL-based IL methods to task-irrelevant features, and also
illustrate the superior robustness of FORM in this setting.

5. Discussion
In this work we introduce the Future Observation Reward
Model, or FORM, an approach to inverse reinforcement
learning that can be used for imitation from observations
without actions. FORM makes few assumptions about the
data being modeled, which makes it a promising approach
for learning behavior from data collected under realistic con-
ditions. In particular, we show that FORM is competitive
with GAIL from observations while exhibiting improved
stability in the face of spurious features. FORM imitates
using likelihood-based generative models, a family of mod-

els that has been extensively studied and that can be scaled
to real-world, noisy data. These properties make FORM
a good candidate for the development of sophisticated ap-
proaches to imitation that can handle high-dimensional data
with domain shifts.

FORM currently has several limitations. The demonstra-
tor model pD must be trained off-line before learning the
imitator model pI and policy πI . This two-stage training
is inefficient in wall clock terms relative to the monolithic
training procedure of GAIL. This is compounded by the
difficulty in assessing the quality of pD using training likeli-
hood alone. In practice, we find that it is a poor predictor
of subsequent imitator performance, necessitating both both
training stages to be performed in order to ascertain if pD

was modeled effectively. A second issue is that we currently
model proprioceptive state: moving to image pixel-based
inputs will require larger and more complex generative mod-
els, which will likely lead to added difficulties.
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Appendices
A. Derivation of the FORM policy gradient
In this section, we derive the following result (given in Sec. 3.2 of the main text):

∇θJFORM(π
I
θ) = Eτ∼πIθ

[
ρFORM

∑
t≥0

∇θ log πIθ(at|xt)
]
. (11)

This result is useful because it establishes that the gradient of the imitator policy’s parameters does not depend on gradients
of either the imitator or demonstrator components of the FORM reward. Because of this, we can safely learn these models
in parallel to policy optimization without introducing any bias: this is at the heart of the FORM algorithm. As in the main
text, we present our result in terms of models of the form p(xt|xt−1, at−1) and policies of the form π(at|xt), but the results
hold without loss of generality to models and policies that depend on states and actions arbitrarily far back into the past.

First, note that for a trajectory τ = (x0, a0, x1, a1, ..., xT−1, aT−1) produced by a policy with parameters θ:

∇θpθ(τ) = pθ(τ)∇θ
∑
t≥0

log πIθ(at|xt). (12)

This result can be shown by decomposing τ into causal conditional probabilities for state and action (see e.g. Ziebart 2010):

∇θpθ(τ) = ∇θ
[∏
t≥0

p(xt|xt−1, at−1)πθ(at|xt)
]

=
∏
t≥0

p(xt|xt−1, at−1)∇θ
(∏
t≥0

πθ(at|xt)
)
+
∏
t≥0

πθ(at|xt)∇θ
(∏
t≥0

p(xt|xt−1, at−1)
)

=
∏
t≥0

p(xt|xt−1, at−1)∇θ
(∏
t≥0

πθ(at|xt)
)

=
pθ(τ)∏

t≥0 πθ(at|xt)
∇θ
(∏
t≥0

πθ(at|xt)
)

= pθ(τ)∇θ log
∏
t≥0

πθ(at|xt)

= pθ(τ)∇θ
∑
t≥0

log πθ(at|xt).

With this identity, we can now show the main result. First, we write the policy gradient in terms of the demonstrator and
imitator components of the return:

∇θJ (πIθ) = ∇θEτ∼πIθ

[
log pD(X)− log pIθ(X)

]
(13)

For the first component, the results follows directly from the identity in equation (12) and the log-derivative trick:
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∇θEτ∼πIθ log p
D(X) = ∇θ

∫
X,A

pIθ(A,X) log pD(X)

=

∫
X,A

∇θ
(
pIθ(A,X) log pD(X)

)
=

∫
X,A

pIθ(A,X)∇θ log pD(X) + log pD(X)∇θpIθ(A,X)

=

∫
X,A

log pD(X)∇θpIθ(A,X)

=

∫
X,A

log pD(X)pIθ(A,X)∇θ
∑
t≥0

log πIθ(at|xt)

= Eτ∼πIθ

[
log pD(X)∇θ

∑
t≥0

log πIθ(at|xt)
]

(14)

The derivation of the gradient for the second component follows a similar pattern:

∇θEτ∼πIθ log p
I
θ(X) = ∇θ

∫
X,A

pIθ(A,X) log pIθ(X)

=

∫
X,A

∇θ
(
pIθ(A,X) log pIθ(X)

)
=

∫
X,A

pIθ(A,X)∇θ
(
log pIθ(X)

)
+ log pIθ(X)∇θ

(
pIθ(A,X)

)
=

∫
X,A

pIθ(X)∇θ
(
log pIθ(X)

)
+

∫
X,A

log pIθ(X)∇θ
(
pIθ(A,X)

)

The first of these two integrals vanishes:

∫
X,A

pIθ(X)∇θ
(
log pIθ(X)

)
=

∫
X

pIθ(X)∇θ
(
log pIθ(X)

)
=

∫
X

pIθ(X)
∇θpIθ(X)

pIθ(X)

=

∫
X

∇θpIθ(X)

= ∇θ
∫
X

pIθ(X) = ∇θ1 = 0,

leaving:

∫
X,A

log pIθ(X)∇θ
(
pIθ(A,X)

)
= Eτ∼πIθ

[
log pI(X)∇θ

∑
t≥0

log πIθ(at|xt)
]
, (15)

by our identity. By stitching the expressions in equations (14) and (15) back into equation (13), we get the final result:
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∇θJ (πIθ) = ∇θEτ∼πIθ

[
log pD(X)− log pIθ(X)

]
= Eτ∼πIθ

[(
log pD(X)− log pIθ(X)

)
∇θ
∑
t≥0

log πIθ(at|xt)
]

= Eτ∼πIθ

[
ρFORM

∑
t≥0

∇θ log πIθ(at|xt)
]
.

B. Additional results
B.1. Additional distractor baselines

We include comparisons to all baseline methods on the distractor experiments. All experiments are conducted identically to
the experiment described in Section 4.4 of the main paper. We include FORM in each plot for ease of comparison. Plots
depict FORM vs. BC vs. BCO (Fig. 5) and FORM vs. VAIfO vs. VAIfO+GP (Fig. 6).

B.2. Analysis of FORM regularization hyperparameters

We conducted several additional experiments to estimate the effect of FORM’s regularization on the results presented in the
main paper, including the effect of autoregressive noise weight on FORM performance (Tab. 2), the effect of maximum
overshooting offset on FORM performance (Tab. 3), and the effect of L2 regularization (Tab. 4). Each of these contributes a
small amount overall, but we found that moderate regularization was important to produce demonstrator models that could
effectively guide imitation. We suspect moderate regularization is necessary to prevents the demonstrator log likelihood
log pD(xt|xt−1) from going to −∞ on transitions not present in the demonstrations. If that were to occur, imitation with a
learned model on new data would be very difficult.

B.3. GAIfO: single vs. two timestep models

All results presented for GAIfO in the main paper input a single timestep to the discriminator. We made this choice as
GAIfO is more susceptible to overfitting when more timesteps are presented as input (for an intuition for why this may
happen, see Section 3.3 in the main paper). The results of a comparison between GAIfO and GAIfO+GP in the single or
two-frame setting are shown in Table 5. In early experiments, we observed even more dramatic overfitting when using
contexts of length greater than 2.

C. Experimental Details
All experiments were conducted in JAX (Bradbury et al., 2018) using tools from the DeepMind JAX ecosystem (Babuschkin
et al., 2020). Below we list details of our experimental setup not included in the main paper for reasons of space.

C.1. Distributed Training

We train all experiments in a distributed manner: 1 GPU learner updates its parameters from a batch of 64 rollouts pulled
from experience replay. Each rollout is 100 timesteps, and the replay buffer stores a maximum of 10,000 rollouts at any time.
50 actors running on CPU execute the environment and push rollouts to the replay buffer. To simplify the implementation,
we use the same setup to process offline trajectories (demonstrations) as well as online trajectories (imitator experience). For
BC, we keep a single replay buffer and all actors sample a recorded episode and push rollouts to it. For GAIfO and BCO,
we keep two replay buffers, one set for the live environment and one set for the demonstration trajectories, and use separate
sets of actors to push rollouts to each replay buffer.

C.2. Network Architectures

The agents we describe below use a shared architecture to encode observations. The observation encoder:

• flattens and concatenates its inputs,
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Figure 5. Performance of FORM compared to VAIfO (GAIfO with a variational discriminator bottleneck) and VAIfO+GP in the presence
of distractor features.

• linearly projects this observation vector to 256 dimensions,
• (optionally) applies layer norm,
• activates using a tanh nonlinearity, and
• (optionally) further encodes with some number of fully-connected hidden layers of size 256,
• activates using an ELU nonlinearity.

C.3. MPO

We train all policies using MPO (Abdolmaleki et al., 2018). This holds for both expert (demonstrator) policies and for the
online policy optimization components of both IRL methods (FORM and GAIfO).

Our MPO agent uses independent policy and critic networks. Both policy and critic networks use an observation encoder
with layer norm and one additional hidden layer.

The policy linearly projects the encoded observation to parameterize the mean and scale of a Gaussian action distribution;
we ensure that the scale doesn’t collapse by transforming it with softplus and adding a minimum value: the scale output is
given by log(1 + expσ) + 10−4.

The critic concatenates the encoded observation with the sampled action (activated with tanh), linearly projects to 256,
applies layer norm and tanh again, then further encodes this with a 3-layer MLP with 256-width hidden units ELU activations
to produce a (scalar) value output.

To improve stability, we use separate target networks for MPO’s policy and critic. We update target networks every 200
gradient updates. MPO uses samples from its Q-function to compare actions at a particular state: we use 20 samples to
make each estimate. The critic is then trained using episodic returns computed using Retrace with λ = 1 and a discount
factor of 0.99. MPO uses independent KL terms to constrain the mean and the scale of the policy: we use constraint weights
εmean = 0.005 and εscale = 0.00001 for the two terms, and a shared temperature of εtemp = 0.1

We optimize both policy and critic with Adam and a fixed learning rate of 10−4; we update the temperature and mean/scale
duals with Adam and a fixed learning rate of 10−3.
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Figure 6. Performance of FORM compared to BC and BCO in the presence of distractor features.

C.4. FORM effect model training

We train two next-step effect models in the FORM agent: one offline on the demonstrations and one online on the live
environment and current policy. We found that regularizing the generative models was important to produce good imitation.
As described in the main text, we used three simple forms of regularization: (i) L2 regularization, (ii) training on data
generated by agent rollouts, i.e. using the network output at a timestep as the input at the next during training , (iii) a
form of observation overshooting, i.e. predicting the observations at multiple future timesteps. Rather than overshooting
autoregressively, we pass an additional label to the output head, indicating which offset δ should be predicted. Given input
at time t, the network is trained to predict the observation at time t+ δ. We train the model to predict all offsets in [1, 5].
Overshooting is used only during training of the demonstrator and imitator generative models: the reward term reflects the
log-likelihood of only the next step.

We also use standardization to ensure the input observations are well-conditioned, as the range of observations varies
considerably from task to task on the Control Suite. The use of standardization also prevents imitators from exploiting
the structure of the input data to produce misleadingly good results. For example: the observation with largest magnitude
on Cheetah Run is the forward velocity, which corresponds almost perfectly to the underlying task reward. An agent that
mimics only the forward velocity (while ignoring all other signals) or that maximizes all signals (without imitating) will
perform well on the task if the raw observations are used. Results from a strategy like this are misleading in the sense
that they may perform well on Cheetah Run because of the design of the observations, not because a general imitation
strategy has been learned. Standardization ensures that the mean and standard deviation of all signals are roughly constant,
preventing agents from exploiting signals like this. We use standardization for both FORM and GAIL in all experiments
in the main paper. We estimate the mean and standard deviation used for standardization by maintain an exponentially
decaying running estimate of these quantities for each dimension in the observation (with a decay of 0.99 per batch of
unrolls).

Including training on model rollouts, overshooting, and standardization, the models maximize 1
5

∑δmax=5
δ=1 log p(σ(xt+δ) |

σ(xt)) + βar log p(σ(xt+1) | σ(x̃t)), where σ is the standardization operator. The first term here is the maximum likelihood,
and the second term is the autoregressive regularizer, which conditions on the model’s own output x̃t ∼ p(· | xt−1). βar
was tuned per environment with a grid search over [0.01, 0.1, 1] (see Appendix Table 2 for the results of the sweep on two
representative domains). We always used overshooting of 5 in the experiments in the paper, as this value generally produced
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βar = 0.01 βar = 0.1 βar = 1.0
Humanoid run 676.02 ± 8.8 668.4 ± 19.4 694.0 ± 10.8

Quadruped run 952.7 ± 3.6 945.4 ± 2.4 955.5 ± 0.4

Table 2. Effect of autoregressive noise weight βar on imitator return.

δmax = 1 δmax = 3 δmax = 5
Humanoid run 266.1 ± 190.5 645.9 ± 32.1 615.8 ± 17.4

Quadruped run 920.57 ± 11.6 920.15 ± 1.2 921.52 ± 9.8

Table 3. Effect of maximum overshooting offset (δmax) on imitator return. All experiments in the paper use δmax = 5.

good results in early experiments (see Appendix Table 3 for ablation results on two representative domains). We found in
early experiments that regularization as a whole helped prevent model overfitting (as measured on held-out demonstrator
data) and generally led to more stable imitation.

At each timestep, observations are standardized and encoded as described above. To compute log p(σ(xt+δ) | σ(xt)) for a
given offset δ, we concatenate a one-hot encoding of δ to the encoding of σ(xt), then process this with an additional hidden
layer of width 256 and linearly project each predicted observation to parameterize a four-component diagonal Gaussian
mixture. The scale term of each Gaussian is transformed with softplus to ensure it is non-negative and is added to a small
bias term of 10−4 to avoid degeneracy.

The models are trained with Adam and a fixed learning rate of 10−4, with an additional L2 regularizer whose coefficient
was tuned per-environment by a grid search over [0.01, 0.1, 1] (see Appendix Table 4 for the results of the sweep on two
representative domains).

C.5. GAIfO

The discriminator network encodes the current observation (as described above), without layer norm or extra hidden layers,
and then applies a two-layer MLP decoder with hidden a width of 256 units to produce the discriminator log odds. As in
FORM, we standardize the input observations. We tried training GAIfO using single and two frame input: we generally
found better performance using single frames, notably on the humanoid tasks (see Appendix Table 5).

GAIfO required regularization to perform adequately on many tasks. We used a gradient penalty on the decoder MLP.
The final objective that we maximized for the discriminator was log p(expert | τexpert) + log p(imitator | τimitator) +
βgp|∇decoder(interpolate(τexpert, τimitator))|2/256 where βgp is tuned per environment (typically 10) and interpolate is a
function which mixes the encodings of the expert and imitator observations with random weights sampled each update.
We generally observed worse performance when using two frames than one frame without the gradient penalty (Appendix
Table 5). When using a variational bottleneck, we add an additional hard KL constraint loss term, using a learned
weighting term α that is optimized via gradient ascent to keep the bound hard. The value of the constraint itself is set via a
hyperparameter ε: we swept the value of this constraint in [0, 0.01, 0.1, 1.0, 10.0] and generally obtained best results using a
value of 1.0. We report results using ε = 1.0 throughout.

The discriminator is trained with Adam and a fixed learning rate of 10−4. Its output is used as the intrinsic reward by the
underlying RL agent at each timestep after applying a softplus transform: log(1 + p(expert | xt)).

weight = 0.01 weight = 0.1 weight = 1.0
Humanoid run 682.9 ± 16.8 694.0 ± 10.8 602.5 ± 74.3

Quadruped run 945.4 ± 2.4 953.0 ± 2.8 918.4 ± 0.7

Table 4. Effect of L2 regularization weight on imitator return.
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GAIfO (1 frame) GAIfO (2 frames) GAIfO+GP (1 frame) GAIfO+GP (2 frames)
Reacher Easy 869.9 ± 48.6 916.1 ± 54.0 915.9 ± 37.8 922.9 ± 15.5

Reacher Hard 818.7 ± 11.3 779.0 ± 44.2 783.7 ± 119.7 837.4 ± 23.5

Cheetah Run 607.6 ± 429.6 5.5 ± 3.4 921.3 ± 6.9 920.4 ± 6.3

Quadruped Walk 672.6 ± 409.8 125.0 ± 69.0 963.6 ± 4.8 966.2 ± 4.2

Quadruped Run 952.5 ± 7.5 168.0 ± 25.9 952.3 ± 2.1 951.0 ± 4.6

Hopper Stand 400.0 ± 164.3 324.3 ± 42.7 748.5 ± 224.1 947.7 ± 7.5

Hopper Hop 689.2 ± 10.0 683.1 ± 18.6 694.4 ± 0.3 708.9 ± 7.2

Walker Stand 989.4 ± 1.5 990.3 ± 1.5 985.4 ± 1.6 989.1 ± 0.8

Walker Walk 976.5 ± 2.8 982.6 ± 0.9 981.6 ± 1.4 977.7 ± 1.0

Walker Run 949.5 ± 5.6 953.7 ± 1.3 947.6 ± 5.5 945.4 ± 6.2

Humanoid Stand 4.9 ± 1.0 5.2 ± 0.4 856.2 ± 15.5 697.4 ± 167.8

Humanoid Walk 1.2 ± 0.4 1.4 ± 0.4 798.4 ± 1.0 792.0 ± 9.4

Humanoid Run 0.6 ± 0.0 0.7 ± 0.1 683.4 ± 6.9 676.9 ± 17.5

Table 5. GAIfO results when conditioned on one or two frames. We report one frame results in the main table, as this setting was generally
stabler and produced the best overall results on the humanoid tasks.

C.6. BC and BCO

In behavioral cloning, we train a Gaussian policy parameterized by a 3-layer MLP. This is the same architecture used for
the policy of all other imitation methods. The policy is trained via maximum likelihood to predict the expert actions on
trajectories sampled from the recorded demonstrations.

For BCO, we additionally train an inverse model. The inverse model is trained on environment transitions from the learned
the policy. The inverse model is then used to predict actions on the expert trajectories, and the policy is updated via the BC
objective.

Both the inverse model and policy are updated with Adam (Kingma & Ba, 2014) and a fixed learning rate of 10−4.

D. Gym and Control Suite as Imitation Benchmark Domains
Here, we evaluate methods on the DeepMind Control Suite, but many imitation learning methods are evaluated on the
OpenAI Gym Mujoco benchmark (Brockman et al., 2016). The Control Suite sidesteps two limitations of evaluation on the
Gym, which are not always acknowledged in the imitation learning literature, and which make it hard to interpret results.

First, Gym tasks include early termination conditions. For example, Gym’s Humanoid task terminates when the agent’s
head falls below a certain height. Early termination can be helpful for speeding up agent training, but in the context of IRL
it introduces a confound: an agent may learn the task by modelling and maximizing the expert’s reward function or by
making the episode last as long as possible. Any IRL algorithm that produces strictly positive rewards or is otherwise biased
to produce longer episodes, can perform well on these tasks while ignoring the expert. GAIL and GAIfO with a softplus
discriminator nonlinearity, a typical choice on continuous control domains, fall into this category (Kostrikov et al., 2019). In
contrast, episodes on the Control Suite have a fixed duration of 1000 timesteps.

Second, all Gym domains use very stereotyped initial state distributions: agents are initialized in a single, stable configuration
plus a small amount of noise. This means that there is essentially no variation between the configurations seen in the
expert demonstrations and on evaluation episodes, which means that even methods that are known to generalize poorly to
configurations not seen in the expert data (such as BC (Ross et al., 2011)) can produce good results on apparently held-out
data. In contrast, initial states in the Control Suite are sampled uniformly over the whole configuration space, resulting in a
fairly large variation between episodes, especially towards the beginning of episodes. Similar limitations of the Gym control
suite environment as a benchmark for control and reinforcement learning are discussed in (Mania et al., 2018).


